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1 Introduction

“Filtering is the science of finding the law of a process given a partial observation of it.” (1) This is a
very common challenge in a lot of (engineering) systems, especially robotic systems. Often time,
we do not have access to the state of the process we are interested in; instead, we estimate the state
with all the partial observations we have. Among all filtering algorithms, this note focuses on the
simplest one: the Kalman filter. Developed around 1960s, Kalman filter is not only theoretically solid
but is also widely applicable. In its early development, Kalman filter was incorporated in the Apollo
navigation computer for the nonlinear trajectory estimation problem.

The goal of this note is to provide an introductory tutorial to this method, and establish the foundation
for more advanced material. Even though there are various approaches to consider the Kalman filter,
I take a probabilistic point of view to set it up. Personally, I find this approach most elegant and
extendable. Typical Kalman filter tutorials are created every once in a while, for example (2).

The notation in this note follows this convention: Random vectors are in boldface. Capital symbols
are reserved for matrices.

2 Multivariate Gaussian Distributions

A random vector x ∈ Rn is multivariate Gaussian if its pdf is given by

px(x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

The vector µ ∈ Rn is called the mean, and the positive definite matrix Σ ∈ Rn×n is called the
covariance matrix. If x has the distribution px(x;µ,Σ), we can simply express as x ∼ N(µ,Σ).

The quantity
√

(x− µ)TΣ−1(x− µ) is known as the Mahalanobis distance. The notation ‖x‖2M =
xTM−1x is used for the squared Mahalanobis distance with covariance matrix M . Thus, the PDF is
also expressed as

px(x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
‖x− µ‖2Σ

)
.

This squared term makes the contour of the multivariate Gaussian distribution elliptical.
Proposition 1 (Affine transformation). If x is multivariate Gaussian with distribution N(µ,Σ), then
Ax + b has distribution N(Aµ+ b, AΣAT).
Proposition 2 (Independence). Given a Gaussian random vector [xT,yT]T, x and y are independent
if and only if the covariance matrix is block diagonal.

Gaussian random vectors have a lot of interesting properties. For our purpose to understand the
Kalman filter, we focus on the following two operations.



Proposition 3 (Addition). If x ∼ N(µx,Σx) and y ∼ N(µy,Σy) are two independent multivariate
Gaussian random vectors with the same dimension, then x + y ∼ N(µx + µy,Σx + Σy).

By obtaining the characteristic functions of both random vectors, the result is immediate. Or you can
think this as the result from the aforementioned two properties.
Proposition 4 (Conditioning). If x ∈ Rm and y ∈ Rn are jointly Gaussian[

x

y

]
∼ N

([
µx

µy

]
,

[
Σx Σxy

Σyx Σy

])
,

then the conditional distribution of x given y = y is still Gaussian with distribution
N
(
µx + ΣxyΣ−1

y (y − µy),Σx − ΣxyΣ−1
y Σyx

)
.

Starting with the undergraduate definition of conditional distribution

px(x|y = y) =
p(x1, x2)∫

x∈Rm p(x1, x2)dx
, (1)

the result can be obtained after some lengthy calculation.

Even though obtaining the distribution is sufficient, I layout a stronger argument based on conditional
expectation. By doing so, we will have a consistent argument even in the continuous-time case, or
the Kalman-Bucy filter.
Proposition 5 (Conditional expectation). If x ∈ Rm and y ∈ Rn are jointly Gaussian[

x

y

]
∼ N

([
µx

µy

]
,

[
Σx Σxy

Σyx Σy

])
,

then
E[x|y] = µx + ΣxyΣ−1

y (y − µy). (2)

Proof. Let’s begin with a simpler case that x and y are zero-mean, or[
x

y

]
∼ N

([
0

0

]
,

[
Σx Σxy

Σyx Σy

])
.

We define x = x̂ + x̃ with

x̂ = ΣxyΣ−1
y y,

x̃ = x− x̂

= x− ΣxyΣ−1
y y.

Since [
x̃

y

]
=

[
Im −ΣxyΣ−1

y

0 In

] [
x

y

]
,

the random vector [x̃T,yT]T is still Gaussian. Furthermore, it is zero-mean with covariance

Cov

([
x̃

y

])
=

[
Im −ΣxyΣ−1

y

0 In

] [
Σx Σxy

Σyx Σy

] [
Im −ΣxyΣ−1

y

0 In

]T
=

[
Σx − ΣxyΣ−1

y Σyx 0

0 Σy

]
.

Therefore, x̃ and y are independent. We now have

E[x|y] = E[x̂ + x̃|y]

= E[x̂|y] + E[x̃|y]

= ΣxyΣ−1
y y + E[x̃]

= ΣxyΣ−1
y y.
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For the general case that [
x

y

]
∼ N

([
µx

µy

]
,

[
Σx Σxy

Σyx Σy

])
,

we have to find x = x̂ + x̃ such that x̃ is still zero-mean and is independent of y. By choosing

x̂ = µx + ΣxyΣ−1
y (y − µy),

x̃ = x− x̂

= x− ΣxyΣ−1
y y,

the same argument holds that x̃ and y are independent, and consequently the main proposition
follows.

The above proof actually decomposes x into dependent and independent part. The conditional PDF of
x can then be easily determined. Given a value of y, the random vector x̂ becomes a known constant,
but the distribution of x̃ is unaffected, since x̃ is independent of y. Therefore, the conditional
distribution of x given y is the same as the unconditional distribution of x̃, shifted by x̂. From the
proof, Cov(x|y) = Cov(x̃) = Σx − ΣxyΣ−1

y Σyx.

This part of the text is modified and expanded from (3).

3 Kalman Filter

We now consider a linear dynamic model with time dynamic model:

st+1 = F st + wt ∈ Rn, t = 0, 1, . . . , (3)

and the observation model:

ot = Hst + vt ∈ Rm, t = 0, 1, . . . . (4)

We assume that s0,w0,w1, . . . ,v0,v1, . . . , are jointly Gaussian and independent. Furthermore,
E[wt] = 0 and E[wtw

T
t ] = Q. E[vt] = 0 and E[vtv

T
t ] = R.

3.1 Theory and Derivation

While we do not have access to st directly, we wish to estimate st optimally with the observations.
The following theorem tells that what we are looking for is nothing but conditional expectation.

Theorem 1. The σ-algebra generated by z is denoted by σ(z), which contains all Borel-measurable
functions of z. Then

arg min
y∈σ(z)

E[||x− y||2] = E[x|y]. (5)

In fact, it is shown in (4) that the conditional expectation is not only the optimal estimator for the
least-mean-square error, but is also optimal for all Bregman loss functions.

According to Theorem 1, the optimal estimator for st+1 given o1:t = {o1, . . . ,ot}, is just
E[st+1|o1:t]. Similarly, the optimal estimator for st+1 given o1:t+1 is E[st+1|o1:t+1]. In reality, obser-
vations are no longer random variable but sampled values. The optimal estimators E[st+1|o1:t = o1:t]
and E[st+1|o1:t+1 = o1:t+1] are just deterministic functions of o1:t and o1:t+1.

The Kalman filter is actually an efficient algorithm to calculate the conditional distributions of st+1

given o1:t = o1:t and o1:t+1 = o1:t+1, recursively.

To simply the notation, we define st|τ to denote the conditional distribution of st given s0,o1:τ . The
condition on s0 is to ensure that the entire HMM is well-define. We won’t explicitly mention it in the
following derivation.

We begin to derive the time propagation update for the Kalman filter. Based on the time dynamic
model (2), we have

st+1|t = F st|t + wt.
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If st|t follows the distribution N(s̄t|t,Σt|t), it is obvious that st+1|t is also Gaussian with mean and
covariance

s̄t+1|t = F s̄t|t, (6)

Σt+1|t = FΣt|tF
T +Q. (7)

For the observation update, we begin with the observation model (3) and condition each random
variable on the information up to now:

ot+1|o1:t = Hst+1|o1:t + vt+1|o1:t

= Hst+1|o1:t + vt+1.

We can see that [
st+1|o1:t

ot+1|o1:t

]
∼ N

([
s̄t+1|t
Hs̄t+1|t

]
,

[
Σt+1|t Σt+1|tH

T

HΣt+1|t HΣt+1|tH
T +R

])
.

Now, st+1|t+1 = (st+1|o1:t)|(ot+1|o1:t). With the formula that we derived in the previous section
and with o1:t+1 = o1:t+1,

s̄t+1|t+1 = s̄t+1|t + Σt+1|tH
T
(
HΣt+1|tH

T +R
)−1 (

ot+1 −Hs̄t+1|1:t

)
, (8)

Σt+1|t+1 = Σt+1|t − Σt+1|tH
T
(
HΣt+1|tH

T +R
)−1

HΣt+1|t. (9)

Most of the textbooks might write (7) and (8) in

s̄t+1|t+1 = s̄t+1|t +Kt+1(ot+1 −Hs̄t+1|t),

Σt+1|t+1 = (I −Kt+1H)Σt+1|t,

with Kt+1 = Σt+1|tH
T
(
HΣt+1|tH

T +R
)−1

, and they call Kt the Kalman gain.

3.2 Systems with Constant Inputs

We can easily extend the result of Kalman filter to incorporate constant inputs. For example, we
consider a more general system model

st+1 = F st +Gut + wt, t = 0, 1, . . . , (10)

and
ot = Hst + Jλt + vt, t = 0, 1, . . . . (11)

ut and λ are not random vectors, but are parameters in the system models.

Following the identical derivation, the update equations of the Kalman filter become

s̄t+1|t = F s̄t|t +Gut, (12)

Σt+1|t = FΣt|tF
T +Q. (13)

and

s̄t+1|t+1 = s̄t+1|t + Σt+1|tH
T
(
HΣt+1|tH

T +R
)−1 (

ot+1 −Hs̄t+1|1:t − Jλt
)
, (14)

Σt+1|t+1 = Σt+1|t − Σt+1|tH
T
(
HΣt+1|tH

T +R
)−1

HΣt+1|t. (15)

We can see that in the presence of constant inputs, only the means of the estimation distribution
change, but the covariance matrices remain the same.

3.3 Convergence

In the Kalman filtering setting, the covariance matrix represents the estimation uncertainty. Whether
the estimation uncertainty stays small, or at least bounded, becomes very important to the estimation
performance. We now discuss when the covariance matrix of a Kalman filter will converge.

First, we rewrite (8) as
Σ−1
t+1|t+1 = Σ−1

t+1|t +HTR−1H. (16)
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by the matrix inversion lemma. In other words, the covariance evolving equations of the time update
and the observation update are dual. While we can say that the time update adds a positive definite
matrix on the covariance matrix, the observation update adds a positive definite matrix on the inverse
of the covariance matrix. Therefore, we can roughly say that the time update increases the uncertainty
while the observation update decrease the uncertainty.

Now, by combining (6) and (8), we have

Σt+1|t = F (Σ−1
t|t−1 +HTR−1H)−1FT +Q.

This is a discrete-time Riccati recursion of the index t. We can think this recursion as the combination
of ascending force from the time update and the decreasing force from the observation update.

Proposition 6. Given (F,Q1/2) stabilizable and (F,H) detectable and Σ0 ≥ 0, then

lim
t→∞

Σt+1|t = Σ

exponentially fast, where Σ is the solution of the discrete-time Riccati equation

Σ = FΣFT +Q− FΣHT
(
R+HTΣH

)−1
HΣFT.

Proof. See (5).

4 Extended Kalman Filter

We now consider a more general dynamic model with time dynamic model:

st+1 = f(st,wt), (17)

and observation model:
ot = h(st,vt). (18)

As we have seen in the case with constant inputs, we can approximate these nonlinear models by
separating how the mean propagates and how the uncertainty evolves linearly. Let’s take time dynamic
model as an example.

s̄t+1 ≈ f(s̄t, 0),

δst+1 ≈
∂

∂st
f(st, wt)

∣∣∣
st=s̄t,wt=0

δst +
∂

∂wt
f(st, wt)

∣∣∣
st=s̄t,wt=0

wt

= Fs,tδst + Fw,twt.

The matrices Fs,t and Fw,t are commonly known as the Jacobian matrices. They capture how the
uncertainty is transferred linearly in this nonlinear model. As δst is zero-mean,

Σt+1|t ≈ Fs,tΣt|tFT
s,t + Fw,tQF

T
w,t.

Similarly, the observation model can be approximated by

ōt+1 ≈ h(s̄t+1, 0),

δot+1 ≈
∂

∂st+1
h(st+1, vt+1)

∣∣∣
st+1=s̄t+1,vt+1=0

δst +
∂

∂st+1
h(st+1, vt+1)

∣∣∣
st+1=s̄t+1,vt+1=0

vt+1

= Hs,t+1δst+1 +Hv,t+1vt+1.

In summary, the time update equations for EKF are given by

s̄t+1|t = f(s̄t, 0),

Σt+1|t = Fs,tΣt|tF
T
s,t + Fw,tQF

T
w,t.

and observation update equations are

s̄t+1|t+1 = s̄t+1|t + Σt+1|tH
T
s

(
HsΣt+1|tH

T
s +HvRH

T
v

)−1 (
ot+1 − h(s̄t+1|t, 0)

)
,

Σt+1|t+1 = Σt+1|t − Σt+1|tH
T
s

(
HsΣt+1|tH

T
s +HvRH

T
v

)−1
HsΣt+1|t.
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5 Beyond Kalman Filter

This section provides a roadmap to more advanced topics in Kalman filtering. We can compare to our
initial model to see which assumptions are relived in the following topics.

5.1 Kalman-Bucy Filter

The discrete-time system (2) and (3) can be considered as the sample from continuous-time systems,
and the filtering method on continuous-time systems is the Kalman-Bucy filter. It is a very classical
example of stochastic differential equations, but our derivation pretty much covers the essential part
in a simpler setting.

5.2 Kalman Filter on a Manifold

Previously, we assume that the state resides in the Euclidean space. However, this assumption rarely
holds in many engineering applications. The state of the engineering systems can usually be modeled
on a manifold. Therefore, the filtering method on a manifold becomes an important topic, and is still
actively studied.

6 Conclusions

I hope this note serves a foundation to understand and to use the Kalman filter, and also provides
mathematical insights to interest the readers.
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