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Goal

1. to understand the theory behind Kalman filter

2. to be able to use EKF to solve problems
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Summary

1. Multivariate Gaussian random vector
2. Kalman filter and its Properties

3. Extended Kalman filter (EKF)
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Multivariate Gaussian Random Vector
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Multivariate Gaussian

e A random vector x € R" is Gaussian if its pdf is given by

i %) = e (5o - 0TS e ).

o We write x ~ N (11, X).

e 3 is a positive definite matrix.

e \/(x —p)TE"1(z — p) is known as the Mahalanobis distance.
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Multivariate Gaussian - Affine Transformation

Proposition (Affine transformation)

If x is multivariate Gaussian with distribution N (u,Y), then
Ax + b has distribution N(Au + b, ALAT).
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Multivariate Gaussian - Independence

Proposition (Independence)

Given a Gaussian random vector [x",y"|", x and y are

independent if and only if the covariance matrix is block diagonal.

~
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Multivariate Gaussian - Addition

Proposition (Addition)

If x ~ N(px,Xx) andy ~ N(uy,Xy) are two independent
multivariate Gaussian random vectors with the same dimension,
then x +y ~ N(ux + py, Xx + Xy).

e We can use the previous two properties to see this.
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Multivariate Gaussian - Condition

Proposition (Conditioning)

If x € R™ andy € R™ are jointly Gaussian

R (PR )}

y py] [Zyx Xy

then the conditional distribution of x given'y =y is still Gaussian
with distribution

N (:U'x + Exyz;rl(y - :U'y)a Ex - Z]xyz;lzyx) .
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Multivariate Gaussian - Condition

e undergraduate probability:

ot () = P Y2
M T e Py, B)da

e | present another interpretation based on conditional
expectation (still undergraduate probability).
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Multivariate Gaussian - Condition

Proposition (Conditional expectation)

If x € R™ andy € R™ are jointly Gaussian
R (PR )}
y py] " [Zyx y

Elx[y] = px + Sxy 25 (v — py)-

then

e E[x|y] is a random vector; moreover, a function of y
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Multivariate Gaussian - Condition

e Consider a simpler case
X 0 by b
(-1 %)
L’} 0] " [Xyx y

e Define x = x + x with

X =x— Sy ly
e Since
S =5 L
y 0 I, y|’
o () =10 7 e ] [
y 0 n dyx Dy 0
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Multivariate Gaussian - Condition

e x and y are independent.
e We now have

Elx|ly] = E[x +xly]
= E[x[y] + E[x[y]
= Yy Sy 'y + E[X]
= Suy Sy 'y
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Multivariate Gaussian - Condition
o For the general case that

MR RE)

e We choose

X = fix + nyE;,l(y = Ity),
X=x—X
=X — nyE;ly
e Since
1. x and y are independent
2. Ex]=0

the proposition is proved.
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Multivariate Gaussian - Condition

e The conditional PDF of x can then be easily determined.

Proposition (Conditioning)

If x € R™ and y € R™ are jointly Gaussian

X Mx Ex EX
(]l %)
[y] py] [Yyx Xy
then the conditional distribution of x given'y =y is still Gaussian
with distribution

N (,U'x + Exyz;l(y - :uy)a Ex - Z:xyz;,lzyx) .
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Summary

e The properties of sum and conditioning are actually the
skeleton of the Kalman filter.
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Kalman Filter and its Properties
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Kalman Filter

We consider a linear dynamic system:

e time evolution (process) model:
st+1 = F's + wy € R”, (1)
- s;: the state
- Wy process noise, independent zero-mean Gaussian with
Ewiw,]=Q >0
e observation (measurement) model:
o, = Hs; +v; € R™, (2)
- 0;: the observed output

- V4. measurement noise, independent zero-mean Gaussian with
Elviv/]=R>0
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Conditioning is the optimal estimator

e Given 01,4 = 014, what is the best estimator of s and s;y17

Theorem

The o-algebra generated by z is denoted by o(z), which contains
all Borel-measurable functions of z. Then

arg min E[||x — y||°] = E[x|y]. (3)
y€o(z)

e The Kalman filter is an efficient algorithm to compute the
conditional distributions of s;;1 given 014 = 014+ and
O1:t+1 = O1:t+1, recursively.
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Time update
e Based on the time dynamic model,
Ser1)t = F'Syp + Wi

o |f St|t fO”OWS the distribution N(§t|t7 Et|t)1 St—‘rl‘t is also
Gaussian with mean and covariance

Se1e = F'sue,
Serife = FEgF T +Q.
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Observation update

e From the observation model and condition each random
variable on the information up to now:

0t41]|01:t = Hs¢11|01:4 + Vit1|01

= Hsi 1|01 + Vg1

e We have

|:St+1’01:t:| ~ N <[ Sty1lt ] [ Et+1|1t Z1t+1\tHT }) )
041|014 H3 ] " [ HY oy Hzt+1|tHT+R

o With s y1j141 = (Si41/01:4)[(041]01:4).

1
Seq1jt+1 = Seq1pe + Zt+1|tHT (H2t+1\tHT + R) (0t41 — HSy11)1:¢)

-1
Serieer = Sesape = SepieH T (HSoouH' + R) - HEppee
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Observation update
e Another common expression is:

Ser1ftr1 = Seq1fe + Kepr(oepr — H3p),
Eeraper = (I — Kipr H) Sy,
. T T —1
e the Kalman gain Ki11 = X, H (HEtH‘tH + R)
o | like this expression better, from matrix inversion lemma
+H'R'H.

-1 _ oyl
Et—l—l\t—f—l - Et—i—l\t



Systems with Constant Inputs

e Consider

St+1 = F'sy + Guy + wy,
o, = Hs; + JA + vy,

u; and A\ are not random vectors, but are parameters in the
system models.

e time update:

Seq1je = F5¢ + Guy,

Siiap = FEgFT +Q.
e observation update:
St41)t+1 = St1jt T EtJrl\tHT (HEtJrlltHT + R)_l (0041 — HSpy1j1:6 — JAe)
Seatfers = Seqar — SeqapeH' (H2t+1|tHT + R)ﬂ HSp1)e.
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Summary

e time update:

Sir1t = '8y,

Sepie = FEF + Q.
e observation update:

—1
Ser1jt1 = Sop1)e + e H (HEHWHT + R) (0t41 — HS411)1:4)

»! =y!

TpH—1
t4+1]t4+1 t+1\t+H R H.

time update ‘ observation update

interval instance
summation condition
Y increase Y. decrease
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Extended Kalman Filter (EKF)
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Extended Kalman Filter
e \We now consider non-linear model:

st+1 = f(st, i),
Oy = h(St,Vt).

e “The EKF is simply an ad hoc state estimator that only
approximates the optimality of Bayes' rule by linearization.”
[Welch and Bishop, 2011]

o We can approximate these nonlinear models by separating how
the mean propagates and how the uncertainty evolves linearly.
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Extended Kalman Filter

e time update
5t41 = f(5,0),
0 0
Sst1 ~ = f(s¢, wt) ds¢ + =— f (s, we) Wy

0s: st=5¢,we=0 owy st=5¢,wt=0
= F, 105t + Fu 1 Wy.

e observation update
Ot+1 = h(5¢41,0),

6St

St41=5¢t+41,V¢41=0

0
00¢41 ~ ——h(St41,Ve41)
85t+1

h(5t+17vt+1) Vi1

St41=5¢t41,V¢41=0

35t+1

= Hs 1 4108c41 + Hot+1Vit1.
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A simple 2D model

e unicycle model f:
S6,t+1 s0,t + At(uw,t + W t)
St41 = [Seeq1| = [Sat + Atcos(se,e)(Uv,e + Wot)
Sy.t+1 Syt + Atsin(se,t)(Uv,t + Wot)

e bearing-and-range model h:

—1 Ay —Sy .t
o, = {OW} = |: o (’\z_sz»t) — Sext

(A = 8u,6)2 + (Ay — sy,1)2

+Vt.
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Extended Kalman Filter

e time update

541t = f(54,0),
Y1 = Fs,tEtqu,T,t + Fw,tQFJ,t-

e observation update
- - T T ! _
St+1)t+1 = St+1)t + Et+1\tHs (H52t+1|tHs + HvRHv) (0t+1 - 0t+1)

-1
Yt = Deq1)e — Et+1\tH;r (Hszt+1\tH:sr + HvRHI) HsXy g1y

’
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Neuroscience

Figure: Recalibration of path integration in hippocampal place cells.

[Jayakumar, 2019]
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Summary

o the theory of Kalman filter

e the implementation of EKF
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