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Goal

1. to understand the theory behind Kalman filter

2. to be able to use EKF to solve problems
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Summary

1. Multivariate Gaussian random vector

2. Kalman filter and its Properties

3. Extended Kalman filter (EKF)
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Multivariate Gaussian Random Vector

4 / 31



Multivariate Gaussian

• A random vector x ∈ Rn is Gaussian if its pdf is given by

px(x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

• We write x ∼ N (µ,Σ).

• Σ is a positive definite matrix.

•
√

(x− µ)TΣ−1(x− µ) is known as the Mahalanobis distance.

5 / 31



Multivariate Gaussian - Affine Transformation

Proposition (Affine transformation)

If x is multivariate Gaussian with distribution N(µ,Σ), then
Ax + b has distribution N(Aµ+ b, AΣAT).
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Multivariate Gaussian - Independence

Proposition (Independence)

Given a Gaussian random vector [xT,yT]T, x and y are
independent if and only if the covariance matrix is block diagonal.
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Multivariate Gaussian - Addition

Proposition (Addition)

If x ∼ N(µx,Σx) and y ∼ N(µy,Σy) are two independent
multivariate Gaussian random vectors with the same dimension,
then x + y ∼ N(µx + µy,Σx + Σy).

• We can use the previous two properties to see this.
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Multivariate Gaussian - Condition

Proposition (Conditioning)

If x ∈ Rm and y ∈ Rn are jointly Gaussian[
x
y

]
∼ N

([
µx
µy

]
,

[
Σx Σxy

Σyx Σy

])
,

then the conditional distribution of x given y = y is still Gaussian
with distribution

N
(
µx + ΣxyΣ−1y (y − µy),Σx − ΣxyΣ−1y Σyx

)
.
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Multivariate Gaussian - Condition

• undergraduate probability:

px|y(x|y) =
p(x, y;µ,Σ)∫

x∈Rm p(x, y;µ,Σ)dx

• I present another interpretation based on conditional
expectation (still undergraduate probability).
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Multivariate Gaussian - Condition

Proposition (Conditional expectation)

If x ∈ Rm and y ∈ Rn are jointly Gaussian[
x
y

]
∼ N

([
µx
µy

]
,

[
Σx Σxy

Σyx Σy

])
,

then
E[x|y] = µx + ΣxyΣ−1y (y − µy).

• E[x|y] is a random vector; moreover, a function of y
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Multivariate Gaussian - Condition

• Consider a simpler case[
x
y

]
∼ N

([
0
0

]
,

[
Σx Σxy

Σyx Σy

])
.

• Define x = x̂ + x̃ with

x̂ = ΣxyΣ−1y y,

x̃ = x− ΣxyΣ−1y y.

• Since [
x̃
y

]
=

[
Im −ΣxyΣ−1y

0 In

] [
x
y

]
,

Cov

([
x̃
y

])
=

[
Im −ΣxyΣ−1y

0 In

] [
Σx Σxy

Σyx Σy

] [
Im −ΣxyΣ−1y

0 In

]T
=

[
Σx − ΣxyΣ−1y Σyx 0

0 Σy

]
.
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Multivariate Gaussian - Condition

• x̃ and y are independent.

• We now have

E[x|y] = E[x̂ + x̃|y]

= E[x̂|y] + E[x̃|y]

= ΣxyΣ−1y y + E[x̃]

= ΣxyΣ−1y y.
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Multivariate Gaussian - Condition

• For the general case that[
x
y

]
∼ N

([
µx
µy

]
,

[
Σx Σxy

Σyx Σy

])
• We choose

x̂ = µx + ΣxyΣ−1y (y − µy),

x̃ = x− x̂

= x− ΣxyΣ−1y y

• Since

1. x̃ and y are independent
2. E[x̃] = 0

the proposition is proved.
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Multivariate Gaussian - Condition

• The conditional PDF of x can then be easily determined.

Proposition (Conditioning)

If x ∈ Rm and y ∈ Rn are jointly Gaussian[
x
y

]
∼ N

([
µx
µy

]
,

[
Σx Σxy

Σyx Σy

])
,

then the conditional distribution of x given y = y is still Gaussian
with distribution

N
(
µx + ΣxyΣ−1y (y − µy),Σx − ΣxyΣ−1y Σyx

)
.
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Summary

• The properties of sum and conditioning are actually the
skeleton of the Kalman filter.
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Kalman Filter and its Properties
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Kalman Filter

We consider a linear dynamic system:

• time evolution (process) model:

st+1 = F st + wt ∈ Rn, (1)

- st: the state
- wt: process noise, independent zero-mean Gaussian with

E[wtw
T
t ] = Q > 0

• observation (measurement) model:

ot = Hst + vt ∈ Rm, (2)

- ot: the observed output
- vt: measurement noise, independent zero-mean Gaussian with

E[vtv
T
t ] = R > 0
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Conditioning is the optimal estimator

• Given o1:t = o1:t, what is the best estimator of s and st+1?

Theorem

The σ-algebra generated by z is denoted by σ(z), which contains
all Borel-measurable functions of z. Then

arg min
y∈σ(z)

E[||x− y||2] = E[x|y]. (3)

• The Kalman filter is an efficient algorithm to compute the
conditional distributions of st+1 given o1:t = o1:t and
o1:t+1 = o1:t+1, recursively.
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Time update

• Based on the time dynamic model,

st+1|t = F st|t + wt.

• If st|t follows the distribution N(s̄t|t,Σt|t), st+1|t is also
Gaussian with mean and covariance

s̄t+1|t = F s̄t|t,

Σt+1|t = FΣt|tF
T +Q.
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Observation update

• From the observation model and condition each random
variable on the information up to now:

ot+1|o1:t = Hst+1|o1:t + vt+1|o1:t
= Hst+1|o1:t + vt+1.

• We have[
st+1|o1:t
ot+1|o1:t

]
∼ N

([
s̄t+1|t
Hs̄t+1|t

]
,

[
Σt+1|t Σt+1|tH

T

HΣt+1|t HΣt+1|tH
T +R

])
.

• With st+1|t+1 = (st+1|o1:t)|(ot+1|o1:t).

s̄t+1|t+1 = s̄t+1|t + Σt+1|tH
T
(
HΣt+1|tH

T +R
)−1 (

ot+1 −Hs̄t+1|1:t

)
,

Σt+1|t+1 = Σt+1|t − Σt+1|tH
T
(
HΣt+1|tH

T +R
)−1

HΣt+1|t.
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Observation update

• Another common expression is:

s̄t+1|t+1 = s̄t+1|t +Kt+1(ot+1 −Hs̄t+1|t),

Σt+1|t+1 = (I −Kt+1H)Σt+1|t,

• the Kalman gain Kt+1 = Σt+1|tH
T
(
HΣt+1|tH

T +R
)−1

• I like this expression better, from matrix inversion lemma

Σ−1t+1|t+1 = Σ−1t+1|t +HTR−1H.
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Systems with Constant Inputs

• Consider

st+1 = F st +Gut + wt,

ot = Hst + Jλt + vt,

ut and λ are not random vectors, but are parameters in the
system models.

• time update:

s̄t+1|t = F s̄t|t +Gut,

Σt+1|t = FΣt|tF
T +Q.

• observation update:

s̄t+1|t+1 = s̄t+1|t + Σt+1|tH
T
(
HΣt+1|tH

T +R
)−1 (

ot+1 −Hs̄t+1|1:t − Jλt
)
,

Σt+1|t+1 = Σt+1|t − Σt+1|tH
T
(
HΣt+1|tH

T +R
)−1

HΣt+1|t.
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Summary

• time update:

s̄t+1|t = F s̄t|t,

Σt+1|t = FΣt|tF
T +Q.

• observation update:

s̄t+1|t+1 = s̄t+1|t + Σt+1|tH
T
(
HΣt+1|tH

T +R
)−1 (

ot+1 −Hs̄t+1|1:t

)
,

Σ−1
t+1|t+1 = Σ−1

t+1|t +HTR−1H.

time update observation update

interval instance

summation condition

Σ increase Σ decrease
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Extended Kalman Filter (EKF)
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Extended Kalman Filter

• We now consider non-linear model:

st+1 = f(st,wt),

ot = h(st,vt).

• “The EKF is simply an ad hoc state estimator that only
approximates the optimality of Bayes’ rule by linearization.”
[Welch and Bishop, 2011]

• We can approximate these nonlinear models by separating how
the mean propagates and how the uncertainty evolves linearly.
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Extended Kalman Filter

• time update

s̄t+1 ≈ f(s̄t, 0),

δst+1 ≈ ∂

∂st
f(st, wt)

∣∣∣
st=s̄t,wt=0

δst +
∂

∂wt
f(st, wt)

∣∣∣
st=s̄t,wt=0

wt

= Fs,tδst + Fw,twt.

• observation update

ōt+1 ≈ h(s̄t+1, 0),

δot+1 ≈ ∂

∂st+1
h(st+1, vt+1)

∣∣∣
st+1=s̄t+1,vt+1=0

δst

+
∂

∂st+1
h(st+1, vt+1)

∣∣∣
st+1=s̄t+1,vt+1=0

vt+1

= Hs,t+1δst+1 +Hv,t+1vt+1.
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A simple 2D model

• unicycle model f :

st+1 =

sθ,t+1

sx,t+1

sy,t+1

 =

 sθ,t + ∆t(uω,t + wω,t)
sx,t + ∆t cos(sθ,t)(uv,t + wv,t)
sy,t + ∆t sin(sθ,t)(uv,t + wv,t)


• bearing-and-range model h:

ot =

[
oφ,t
or,t

]
=

[
tan−1

(
λy−sy,t

λx−sx,t

)
− sθ,t√

(λx − sx,t)2 + (λy − sy,t)2

]
+ vt.
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Extended Kalman Filter

• time update

s̄t+1|t = f(s̄t, 0),

Σt+1|t = Fs,tΣt|tF
T
s,t + Fw,tQF

T
w,t.

• observation update

s̄t+1|t+1 = s̄t+1|t + Σt+1|tH
T
s

(
HsΣt+1|tH

T
s +HvRH

T
v

)−1

(ot+1 − ōt+1) ,

Σt+1|t+1 = Σt+1|t − Σt+1|tH
T
s

(
HsΣt+1|tH

T
s +HvRH

T
v

)−1

HsΣt+1|t.

29 / 31



Neuroscience

Figure: Recalibration of path integration in hippocampal place cells.
[Jayakumar, 2019]
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Summary

• the theory of Kalman filter

• the implementation of EKF
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