ECE183DA (Winter 2022)
 Design of Robotic Systems I

Prof. Ankur Mehta 〈mehtank@ucla.edu〉

Problem set $6 \quad$ Bayesian filtering and POMDPs

Key takeaways

After this lecture, you should understand:

- The mathematical formulation of the state estimation problem as an input-output system;
- How to make use of principles of probability (i.e. Bayes theorem etc.) along with principles of systems (i.e. Markov property) to derive exact and approximate algorithmic implementations of a state estimator; and
- Several ways in which we can connect a state estimator to a planner to allow for planning under uncertainty.

Assignment

6(a). What is the mathematical input (action) space of the state estimator system?
$6(\mathrm{~b})$. Describe in two or three English sentences a comparison of the following two options, with respect to the computational cost needed for a single (one time-step) update of its belief state:

- Bayes Filter, vs.
- particle filter starting with one particle per state.
$6(\mathrm{c})$. Write out a defining (non-recursive) equation for the optimal value function V^{*} for a POMDP problem that uses the belief state to define the system. (You don't need to solve this equation.) What is the functional form of a stochastic policy π on that belief state POMDP?

6(d). Optional. Based on an optimal policy π^{*} for a fully observable MDP, write out a mathematical expression (not coded implementation) for the following two policies on a POMDP of the corresponding system (with noisy observations):

- A stochastic policy with a probability distribution over actions illustrated by the following pseudocode:

1: Set the state of a hypothetical robot according to (drawn from) the belief state probability distribution,
2: Have that robot execute the optimal policy π^{*},
3: Collect all such robots and compute the overall probability distribution over actions.

- A deterministic policy that chooses the most likely action from the above stochastic policy.
$6(\mathrm{e})$. Would you be willing to let us use your correct responses as (anonymized) examples for the class?

