Simultaneous Localization and Mapping

Tsang-Kai Chang
tsangkaichang@ucla.edu

Nov., 2020

Goal

1. present the importance of the SLAM problem
2. highlight the engineering challenges in SLAM systems

Summary

1. Overview of navigation problems
2. Optimization-based SLAM
3. SLAM in visual-inertial systems

Navigation Problems

From the very beginning...

$$
\begin{aligned}
\mathbf{s}_{t+1} & =f\left(\mathbf{s}_{t}, u_{t}\right)+\mathbf{w}_{t} \\
\mathbf{o}_{t} & =h\left(\mathbf{s}_{t}, \lambda\right)+\mathbf{v}_{t}
\end{aligned}
$$

- localization:
- SLAM:
- planning:

A simple 2D model

- unicycle model f :

$$
\begin{aligned}
\mathbf{s}_{t+1}=\left[\begin{array}{l}
\mathbf{s}_{\theta, t+1} \\
\mathbf{s}_{x, t+1} \\
\mathbf{s}_{y, t+1}
\end{array}\right] & =\left[\begin{array}{c}
\mathbf{s}_{\theta, t}+\Delta t\left(u_{\omega, t}+\mathbf{w}_{\omega, t}\right) \\
\mathbf{s}_{x, t}+\Delta t \cos \left(\mathbf{s}_{\theta, t}\right)\left(u_{v, t}+\mathbf{w}_{v, t}\right) \\
\mathbf{s}_{y, t}+\Delta t \sin \left(\mathbf{s}_{\theta, t}\right)\left(u_{v, t}+\mathbf{w}_{v, t}\right)
\end{array}\right] \\
& =\left[\begin{array}{l}
\mathbf{s}_{\theta, t} \\
\mathbf{s}_{x, t} \\
\mathbf{s}_{y, t}
\end{array}\right]+\Delta t\left[\begin{array}{cc}
1 & 0 \\
0 & \cos \left(\mathbf{s}_{\theta, t}\right) \\
0 & \sin \left(\mathbf{s}_{\theta, t}\right)
\end{array}\right]\left[\begin{array}{l}
u_{\omega, t}+\mathbf{w}_{\omega, t} \\
u_{v, t}+\mathbf{w}_{v, t}
\end{array}\right] .
\end{aligned}
$$

- bearing-and-range model h :

$$
\mathbf{o}_{t}=\left[\begin{array}{c}
\mathbf{o}_{\phi, t} \\
\mathbf{o}_{r, t}
\end{array}\right]=\left[\begin{array}{c}
\tan ^{-1}\left(\frac{\lambda_{y}-\mathbf{s}_{y, t}}{\lambda_{x}-\mathbf{s}_{x, t}}\right)-\mathbf{s}_{\theta, t} \\
\sqrt{\left(\lambda_{x}-\mathbf{s}_{x, t}\right)^{2}+\left(\lambda_{y}-\mathbf{s}_{y, t}\right)^{2}}
\end{array}\right]+\mathbf{v}_{t}
$$

- We will focus on another more realistic and common model in the second part.

Optimization-based SLAM

Optimization-based SLAM

- SLAM is just an optimization problem!?

HMM Interpretation

- $\left(\mathbf{s}_{0: T}, \mathbf{o}_{1: T}\right)$ forms a hidden Markov model (HMM).
- The log-likelihood function is now

$$
\begin{aligned}
& \log p_{\mathbf{s}_{0: T}, \mathbf{o}_{1: T}}\left(s_{0: T}, o_{1: T} ; u_{0: T-1}, \lambda\right) \\
& \quad=\log p_{\mathbf{s}_{0}}\left(s_{0}\right)+\sum_{t=0}^{T-1} \log p_{\mathbf{s}_{t+1} \mid \mathbf{s}_{t}}\left(s_{t+1} \mid s_{t} ; u_{t}\right)+\sum_{t=1}^{T} \log p_{\mathbf{o}_{t} \mid \mathbf{s}_{t}}\left(o_{t} \mid s_{t} ; \lambda\right)
\end{aligned}
$$

- When the noises are zero-mean Gaussian, we have

$$
\begin{aligned}
\log p_{\mathbf{s}_{t+1} \mid \mathbf{s}_{t}}\left(s_{t+1} \mid s_{t} ; u_{t}\right) & =c_{Q}-\frac{1}{2}\left\|s_{t+1}-f\left(s_{t}, u_{t}\right)\right\|_{Q}^{2} \\
\log p_{\mathbf{o}_{t} \mid \mathbf{s}_{t}}\left(o_{t} \mid s_{t} ; \lambda\right) & =c_{R}-\frac{1}{2}\left\|o_{t}-h\left(s_{t}, \lambda\right)\right\|_{R}^{2}
\end{aligned}
$$

where Q and R are the covariance matrices of \mathbf{w}_{t} and \mathbf{v}_{t}, respectively.

Optimization-based SLAM

- Given $o_{1: T}$, the optimal value ($\left.\hat{s}_{0: T}, \hat{\lambda}\right)$ can be considered as the solution of the corresponding maximum likelihood (ML) problem.
- the ML problem $=$ a nonlinear least square (NLS) problem ${ }^{1}$

$$
\begin{aligned}
\left(\hat{s}_{0: T}, \hat{\lambda}\right) & =\underset{\left(s_{0: T}, \lambda\right)}{\arg \max } \log p_{\mathbf{s}_{0: T}, \mathbf{o}_{1: T}}\left(s_{0: T}, o_{1: T} ; u_{0: T-1}, \lambda\right) \\
& =\underset{\left(s_{0: T}, \lambda\right)}{\arg \max } \sum_{t=0}^{T-1} \log p_{\mathbf{s}_{t+1} \mid \mathbf{s}_{t}}\left(s_{t+1} \mid s_{t} ; u_{t}\right)+\sum_{t=1}^{T} \log p_{\mathbf{o}_{t} \mid \mathbf{s}_{t}}\left(o_{t} \mid s_{t} ; \lambda\right) \\
& =\underset{\left(s_{0: T}, \lambda\right)}{\arg \min } \sum_{t=0}^{T-1}\left\|s_{t+1}-f\left(s_{t}, u_{t}\right)\right\|_{Q}^{2}+\sum_{t=1}^{T}\left\|o_{t}-h\left(s_{t}, \lambda\right)\right\|_{R}^{2}
\end{aligned}
$$

Solving NLS problem

- An essential part in early SLAM literature
- We have tools now, g2o or ceres for example.

Graph-based SLAM

- Due to several reasons, λ is not important.
- In Graph SLAM, the log-likelihood of the entire trajectory becomes,

$$
\begin{aligned}
& \log p_{S_{0: T}, O_{(t, \tau) \in \mathcal{O}_{v}}}\left(s_{0: T}, o_{(t, \tau) \in \mathcal{O}_{v}} ; u_{0: T-1}\right)=\log p_{S_{0}}\left(s_{0}\right) \\
& \quad+\sum_{t=0}^{T-1} \log p_{S_{t+1} \mid S_{t}}\left(s_{t+1} \mid s_{t} ; u_{t}\right)+\sum_{(t, \tau) \in \mathcal{O}_{v}} \log p_{O_{(t, \tau)} \mid S_{t}, S_{\tau}}\left(o_{(t, \tau)} \mid s_{t}, s_{\tau}\right)
\end{aligned}
$$

- And it leads to a NLS problem again:

$$
\begin{aligned}
\hat{s}_{1: T} & =\underset{s_{1: T}}{\arg \max } \log p_{S_{0: T}, O_{(t, \tau) \in \mathcal{O}_{v}}}\left(s_{0: T}, o_{(t, \tau) \in \mathcal{O}_{v}} ; u_{0: T-1}\right) \\
& =\underset{s_{1: T}}{\arg \max } \sum_{t=0}^{T-1}\left\|s_{t+1}-f\left(s_{t}, u_{t}\right)\right\|_{Q}^{2}+\sum_{(t, \tau) \in \mathcal{O}_{v}}\left\|o_{t, \tau}-h^{\prime}\left(s_{t}, s_{\tau}\right)\right\|_{R^{\prime}}^{2}
\end{aligned}
$$

About nomenclature

- maybe explicit-landmark and implicit-landmark?

SLAM in Visual-Inertial Systems

SLAM in VI system

- Commonly, SLAM systems use inertial measurement units (IMUs) as proprioceptive sensors, and cameras as exteroceptive sensors.
- I will talk about the essential knowledge to build such SLAM systems.
- Definitely not the only method to do so.

Architecture

- frontent
- backend

Rigid body transformation

- Different measurements are taken in different frames:
- navigation frame (n) / world frame (w)
- body frame (b)
- camera frame (c)
- We have to know how to transform measurements between these frames.

Orientation parameterization

- Euler angle
- Gimbal lock
- rotation matrix

$$
\begin{aligned}
R R^{\top} & =R^{\top} R=I_{3} \\
\operatorname{det} R & =1 .
\end{aligned}
$$

- unit quaternion

$$
q=\left[\begin{array}{llll}
q_{0} & q_{1} & q_{2} & q_{3}
\end{array}\right]^{\top}=\left[\begin{array}{c}
q_{0} \\
q_{v}^{\top}
\end{array}\right] \in \mathbb{R}^{4}, \quad\|q\|_{2}=1
$$

Time dynamic model

- $\mathrm{IMU}=$ gyroscope + accelerometers
- IMU measurements

$$
\begin{aligned}
& u_{\omega, t}^{n b}=\omega_{t}^{n b}+\delta_{\omega, t}+\eta_{\omega, t}, \\
& u_{a, t}=\left(R_{t}^{n b}\right)^{\top}\left(a_{t}-g\right)+\delta_{a, t}+\eta_{a, t} .
\end{aligned}
$$

- time dynamic model

$$
\begin{aligned}
& s_{q, t+1}^{n b}=s_{q, t}^{n b} \odot \exp _{\mathbf{q}}\left(\Delta t\left(u_{\omega, t}-\delta_{\omega, t}-\eta_{\omega, t}\right)\right), \\
& s_{v, t+1}=s_{v, t}+\Delta t\left(R_{\mathbf{q}}\left(s_{q, t}^{n b}\right)\left(u_{a, t}-\delta_{a, t}-\eta_{a, t}\right)+g\right), \\
& s_{p, t+1}=s_{p, t}+\Delta t s_{v, t}+\frac{\Delta t^{2}}{2}\left(R_{\mathbf{q}}\left(s_{q, t}^{n b}\right)\left(u_{a, t}-\delta_{a, t}-\eta_{a, t}\right)+g\right) .
\end{aligned}
$$

IMU preintegration

- Normally, imu rates are much higher then the observation rate.
- In practice, this causes some numerical difficulties.

$$
\begin{aligned}
\Delta R_{t, t+L} & \doteq R_{t}^{\top} R_{t+1}=\prod_{l=0}^{L-1} \exp \left(\Delta t\left(u_{\omega, t+l}-\delta_{\omega, t+l}-\eta_{\omega, t+l}\right)\right) \\
\Delta v_{t, t+L} & \doteq R_{t}^{\top}\left(v_{t+L}-v_{t}-g \Delta t_{L}\right)=\sum_{l=0}^{L-1} \Delta t \Delta R_{t, t+l}\left(u_{a, t_{l}}-\delta_{a, t+l}-\eta_{a, t+l}\right) \\
\Delta p_{t, t+L} & \doteq R_{t}^{\top}\left(p_{t+L}-p_{t}-v_{t} \Delta t_{L}-\frac{1}{2} g \Delta t_{L}^{2}\right) \\
& =\sum_{l=0}^{L-1}\left[\Delta t \Delta v_{t, t+l}+\frac{\Delta t^{2}}{2} \Delta R_{t, t+l}\left(u_{a, t+l}-\delta_{a, t+l}-\eta_{a, t+l}\right)\right]
\end{aligned}
$$

Observation model

- pinhole camera model

$$
\begin{aligned}
o_{m, t} & =\pi\left(T^{c n}\left(\lambda_{m}\right)\right)+v_{m, t} \\
\pi\left([x, y, z]^{\top}\right) & =\left[\begin{array}{cc}
f_{u} & 0 \\
0 & f_{v}
\end{array}\right]\left[\begin{array}{l}
x / z \\
y / z
\end{array}\right]+\left[\begin{array}{l}
p_{u} \\
p_{v}
\end{array}\right] .
\end{aligned}
$$

- More realistic models should be used, including distortion.

Figure: Pinhole camera model. [Wiki]

Feature extraction and matching

- Extract features first

- then find the matching between features from different images

Optimization over a manifold

- Even though we can use different parameterization, there are only 3 degrees of freedom for orientation.
- We need to provide the Jacobian matrices, which stand for the variation to the global parameterization from the local parameterization.
- different noise modeling
- tedious!

Summary

Summary

- There are several open-source SLAM projects: ORB SLAM, RGB-D SLAM, okvis, etc.
- Build a SLAM system on your own!
- How can SLAM be integrated into the entire navigation system?

